Weak Error for the Euler Scheme Approximation of Diffusions with Non-Smooth Coefficients *

نویسندگان

  • V Konakov
  • S Menozzi
  • S. Menozzi
چکیده

We study the weak error associated with the Euler scheme of non degenerate diffusion processes with non smooth bounded coefficients. Namely, we consider the cases of Hölder continuous coefficients as well as piecewise smooth drifts with smooth diffusion matrices. 1991 Mathematics Subject Classification. Primary 60H10; Secondary 65C30. December 22, 2016.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectorial coupling between one-dimensional diffusions with linear diffusion coefficient and their Euler scheme

It is well known that the strong error approximation, in the space of continuous paths equipped with the supremum norm, between a diffusion process, with smooth coefficients, and its Euler approximation with step $1/n$ is $O(nˆ{-1/2})$ and that the weak error estimation between the marginal laws, at the terminal time $T$, is $O(nˆ{-1})$. In this talk, we study the $p-$Wasserstein distance betwe...

متن کامل

A Symmetrized Euler Scheme for an Efficient Approximation of Reflected Diffusions

In this article, we analyse the error induced by the Euler scheme combined with a symmetry procedure near the boundary for the simulation of diffusion processes with an oblique reflection on a smooth boundary. This procedure is easy to implement and, in addition, accurate: indeed, we prove that it yields a weak rate of convergence of order 1 with respect to the time-discretization step.

متن کامل

Non-globally Lipschitz Counterexamples for the stochastic Euler scheme

The stochastic Euler scheme is known to converge to the exact solution of a stochastic differential equation with globally Lipschitz coefficients and even with coefficients which grow at most linearly. For super-linearly growing coefficients convergence in the strong and numerically weak sense remained an open question. In this article we prove for many stochastic differential equations with su...

متن کامل

Adaptive Weak Approximation of Diffusions with Jumps

This work develops adaptive time stepping algorithms for the approximation of a functional of a diffusion with jumps based on a jump augmented Monte Carlo Euler–Maruyama method, which achieve a prescribed precision. The main result is the derivation of new expansions for the time discretization error, with computable leading order term in a posteriori form, which are based on stochastic flows a...

متن کامل

An explicit Euler scheme with strong rate of convergence for non-Lipschitz SDEs

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity conditions, we obtain the optimal strong error rate. We consider SDEs popular in the mathematical finance literature, includi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017